FAMILIARIZATION OF SCIENTIFIC COMPUTING
OBJECTIVE
· To familiarize different functions for scientific computing with examples
LEARNING
OUTCOMES
· After
the completion of this experiment students will be able to execute small
scripts using different arithmetic functions
SOFTWARE
USED:
MATLAB® R2017a
THEORY
The different arithmetic
functions of MATLAB are listed below.
Y = abs(X) returns the absolute value of each element in
array X. If X is complex, abs(X) returns the complex magnitude.
abs
- Absolute value and complex magnitude
angle
-
Phase angle
complex
- Create complex array
isreal
-
whether array is real
real
-
Real part of complex number
sinc – returns an array, y,
whose elements are the sinc of
the elements of the input, x.
imag - Imaginary Part of Complex Number
sin
– Sine of argument in radians
cos - cos of argument in radians
1.
Type the following in the command window, write down the results and the
functions of these built in modules
(a) 2.15e-3
(b) mod(5,3)
(c) floor(3.5)
(d) ceil(3.6)
(e) round(3.4)
(f) Create a one dimensional array of ones
having size 5
(g) Create a one dimensional array of
zeros having size 5
(h) Create a 3x2 matrix ‘K’ having only
zeros
2. Generate the following output using the function ‘abs’
(a)
(b)
(c)
PROGRAM
(a)
x=[-3:0.1:3];
y=abs(x);
plot(x,y)
xlabel('x');
ylabel('y');
(b)
x=[-3:0.1:3];
y=-abs(x);
plot(x,y)
xlabel('x');
ylabel('y');
(c)
x=[-3:0.1:3];
y=abs(x);
plot(x,y)
hold on;
y=-abs(x);
plot(x,y);
hold off;
xlabel('x');
ylabel('y');
3.
Create a complex number 5+4i, extract the real and imaginary parts and compute the
magnitude of the vector using built in functions
PROGRAM
z=complex(5,4);
disp('Real Part');
a=real(z)
disp('Imaginary Part');
b=imag(z)
disp('Magnitude');
abs(z)
OUTPUT
Real Part
a =
5
Imaginary Part
b =
4
Magnitude
ans =6.4031
4.
Represent the complex exponential form
PROGRAM
z=exp(pi*i);
disp('Complex number in rectangular
form');
z
disp('Real Part');
a=real(z)
disp('Magnitude');
mag=abs(z)
disp('Angle in radians');
ang=angle(z)
disp('Angle in degree');
ang_deg=ang*(180/pi)
OUTPUT
Complex number in rectangular form
z = -1.0000 + 0.0000i
Real Part
a = -1
Magnitude
mag =1
Angle in radians
ang =3.1416
Angle in degree
ang_deg =180
5.
Plot the following
(a)
PROGRAM
(a)
x=[-5:0.001:5];
y=sinc(x);
plot(x,y)
(b)
t=-9:0.01:9;
y=sin(t);
x=cos(t);
plot(x,y)
(c)
t=0:0.001:1
y=exp(-5*t);
plot(t,y);
5.
Plot sinewaves of frequency 50 and 100 Hz on the same figure window.
PROGRAM
f=50;
t=0:0.0002:0.1;
y=sin(2*pi*f*t);
plot(t,y);
grid on;
hold on;
f=100;
t=0:0.0002:0.1;
y=sin(2*pi*f*t);
plot(t,y);
hold off;
OUTPUT
6.
Replace the given code with vectorized code for fast computing
(a)
This code computes the sine of 1,001 values ranging from 0 to 10:
clc;
clear
all;
close
all;
i = 0;
for t =
0:.01:10
i = i + 1;
y(i) = sin(t);
end
disp(y);
(b)
clc;
clear
all;
close
all;
r=[1:4];
h=[1:4];
for i=1:4
volume(i)
= pi*r(i)*r(i)*h(i);
end
disp(volume);
(a)
t = 0:.01:10;
y = sin(t);
disp(y);
(b)
clc;
clear all;
close all;
r=[1:4];
h=[1:4];
volume = pi*r.^2.*h;
disp(volume);
OUTPUT
[3.1416
25.1327 84.8230
201.0619]
7. Execute a script (.m file) to obtain
the dot product and the cross product of two vectors a and b, where a = (1 5 6)
and b = (2 3 8).
PROGRAM
a
= [1 5 6];
b
= [2 3 8];
d=dot(a,b)
c=cross(a,b)
OUTPUT
d
=65
c
= 22 4 -7
8. Simplify the expression and express the
complex number in rectangular and polar form
(a)
(b)
(a) PROGRAM
clc;
clear
all;
close
all;
Z1
= 0.5;
Z2
=6*j;
Z3
= 3.5*exp(j*0.6);
Z4
= 3+6*j;
Z5
= exp(j*0.3*pi);
disp('Z
in rectangular form is');
Z_rect
= Z1+Z2+Z3+(Z4*Z5);
Z_rect
Z_mag
= abs (Z_rect); % magnitude of Z
Z_angle
= angle(Z_rect)*(180/pi); % Angle in degrees
disp('complex
number Z in polar form, mag, phase');
Z_polar
= [Z_mag, Z_angle]
OUTPUT
Z
in rectangular form is
Z_rect
=0.2979 +13.9300i
complex
number Z in polar form, mag, phase
Z_polar
=13.9332 88.7748
(b) PROGRAM
clc;
clear
all;
close
all;
Z1
= 3+4*j;
Z2
= 5+2*j;
theta
= 60*(pi/180); % angle in radians
Z3
= 2*exp(j*theta);
Z4
= 3+6*j;
Z5
= 1+2*j;
disp('Z
in rectangular form is');
Z_rect
= Z1*Z2*Z3/(Z4*Z5);
Z_rect
Z_mag
= abs (Z_rect); % magnitude of Z
Z_angle
= angle(Z_rect)*(180/pi); % Angle in degrees
disp('complex
number Z in polar form, mag, phase');
Z_polar
= [Z_mag, Z_angle]
OUTPUT
Z
in rectangular form is
Z_rect
=3.5546 + 0.5035i
complex
number Z in polar form, mag, phase
Z_polar
= 3.5901 8.0616
9. The voltage across a capacitor is
Plot voltage v (t), versus time, t, for t
= 0 to 50 seconds with increment of 5 s. Do not use loops.
PROGRAM
clc;
clear all;
close all;
t=0:5:50
v=10*(1-exp(-0.2*t));
plot(t,v)
xlabel('Time')
ylabel('Voltage')
OUTPUT
INFERENCE:
Familiarized
with basic arithmetic functions for scientific computing and used vectorized
computing for fast scientific applications.
Comments
Post a Comment