Solution of ordinary differential Equation
OBJECTIVE
- To solve ordinary differential Equation
LEARNING OUTCOMES
- After the completion of this experiment students will be able to solve ordinary differential Equation
SOFTWARE USED:
MATLAB® R2017a
1. Solve the first order differential equation
With
initial condition x(0)=1
Program
syms
x(t);
eqn=
diff(x,t)+ 2*x ==0;
cond=
x(0)==1;
soln=
dsolve(eqn,cond)
t=0:0.05:10
s=subs(soln)
plot(s)
title('Response
of firt order differential equation')
xlabel('time')
Output
soln =
exp(-2*t)
2.
solve second order differential equation
Program
syms
x(t) ;
eqn=
diff(x,t,2) + 2*diff(x,t) + 2*x ==
exp(-t);
soln=
dsolve(eqn);
soln=simplify(soln)
OUTPUT
soln = exp(-t)*(C4*cos(t) + C5*sin(t) + 1)
3. Solve the differential equation
y(0)=1
y’(0)=0
PROGRAM
syms y(x)
Dy = diff(y);
ode = diff(y,x,2) == cos(2*x)-y;
cond1 = y(0) == 1;
cond2 = Dy(0) == 0;
conds = [cond1 cond2];
ySol = dsolve(ode,conds);
ySol = simplify(ySol)
OUTPUT
1 - (8*sin(x/2)^4)/3
4.
Solve for the
current transient through an RC network (with RC = 3) that is driven by
(a) 5V DC
(b) The signal
(a)
PROGRAM
clc;
clear all;
close all;
syms i(t);
V=5;
R=3;
C=1;
eqn=
diff(i,t)+ i/(R*C) ==0;
cond= i(0)==V/R;
soln= dsolve(eqn,cond)
t=0:.05:10;
s=subs(soln);
plot(t,s,'k', 'linewidth',2)
title('Current Transient of RC circuit');
xlabel('time');
ylabel('Current through capacitor');
(b)
PROGRAM
clear all;
close all;
syms i(t);
V=5*exp(-t);
R=3;
C=1;
eqn=
diff(i,t)+ i/(R*C) ==diff(V,t)/R;
cond= i(0)==5/R;
soln= dsolve(eqn,cond)
t=0:.05:10;
s=subs(soln);
plot(t,s,'k', 'linewidth',2)
title('Current Transient of RC circuit');
xlabel('time');
ylabel('Current through capacitor');
OUTPUT
5. Solve for the voltage across the
capacitor of an RC network that is
driven by 5V DC, with three different time constants.
PROGRAM
clc;
clear all;
close all;
syms vc(t);
V=5;
R1=3; %RC time constant = 3
C1=1;
TC1=R1*C1;%Time constant
eqn=
diff(vc,t)==(V-vc)/(TC1);
cond= vc(0)==0;
soln1= dsolve(eqn,cond)
TC2=2*TC1;%2 times the Time constant
eqn=
diff(vc,t)==(V-vc)/(TC2);
soln2= dsolve(eqn,cond)
TC3=3*TC1;%3 times the Time constant
eqn=
diff(vc,t)==(V-vc)/(TC3);
soln3= dsolve(eqn,cond)
t=0:.05:20;
s1=subs(soln1);
s2=subs(soln2);
s3=subs(soln3);
plot(t,s1, 'r', 'linewidth',2);
hold on;
plot(t,s2, 'g', 'linewidth',2);
hold on;
plot(t,s3, 'k', 'linewidth',2);
legend('RC','2*RC','3*RC');
title('Voltage Transient of RC circuit');
xlabel('time');
ylabel('Voltage across capacitor');
OUTPUT
6. Solve the
current transient through a series RLC circuit with R = 9, L = 1H and C = 0.05
F that is driven by
(a) 20 V DC
(b) The signal
and plot the solutions
(a)
PROGRAM
clc;
clear all;
close all;
syms i(t);
V=20;
R1=9;
L1=1;
C1=0.05;
Di=diff(i);
eqn1=
diff(i,t,2)+(R1/L1)*diff(i,t)+(1/(L1*C1))* i ==0;
cond1=[i(0)==0, Di(0)==20];
soln1= dsolve(eqn1, cond1);
t=0:.005:5;
s1=subs(soln1);
plot(t,s1,'r', 'linewidth',2);
title('Current Transient through RlC
circuit');
xlabel('time');
ylabel('Current through the circuit');
OUTPUT
(b)
PROGRAM
clc;
clear all;
close all;
syms i(t);
V=20*exp(-t);
R1=9;
L1=1;
C1=0.05;
Di=diff(i);
eqn1=
diff(i,t,2)+(R1/L1)*diff(i,t)+(1/(L1*C1))* i ==(1/L1)*diff(V,t);
cond1=[i(0)==0, Di(0)==20];
soln1= dsolve(eqn1, cond1);
t=0:.005:5;
s1=subs(soln1);
plot(t,s1,'r', 'linewidth',2);
title('Current Transient through RlC
circuit');
xlabel('time');
ylabel('Current through the circuit');
OUTPUT
Comments
Post a Comment